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There has recently been a great deal of interest in inferring network con-
nectivity from the spike trains in populations of neurons. One class of
useful models that can be fit easily to spiking data is based on gener-
alized linear point process models from statistics. Once the parameters
for these models are fit, the analyst is left with a nonlinear spiking net-
work model with delays, which in general may be very difficult to un-
derstand analytically. Here we develop mean-field methods for approx-
imating the stimulus-driven firing rates (in both the time-varying and
steady-state cases), auto- and cross-correlations, and stimulus-dependent
filtering properties of these networks. These approximations are valid
when the contributions of individual network coupling terms are small
and, hence, the total input to a neuron is approximately gaussian. These
approximations lead to deterministic ordinary differential equations that
are much easier to solve and analyze than direct Monte Carlo simulation
of the network activity. These approximations also provide an analytical
way to evaluate the linear input-output filter of neurons and how the
filters are modulated by network interactions and some stimulus feature.
Finally, in the case of strong refractory effects, the mean-field approx-
imations in the generalized linear model become inaccurate; therefore,
we introduce a model that captures strong refractoriness, retains all of
the easy fitting properties of the standard generalized linear model, and
leads to much more accurate approximations of mean firing rates and
cross-correlations that retain fine temporal behaviors.
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1 Introduction

One of the fundamental problems in the statistical analysis of neural data is
to infer the connectivity and stimulus dependence of a network of neurons
given an observed sequence of extracellular spike times in the network
(Brown, Kass, & Mitra, 2004). Estimating the parameters of network models
from data is in general a computationally difficult problem because of the
high dimensionality of the parameter space and the possible complexity of
the model’s objective function given an observed data set of network spike
times.

One class of models that has proven quite useful is known in the statistics
literature as the generalized linear model (GLM; Brillinger, 1988; Chornoboy,
Schramm, & Karr, 1988; see also Martignon et al., 2000; Kulkarni & Paninski,
2007; Nykamp, 2007), variants of which have been applied successfully
in the hippocampus (Harris, Csicsvari, Hirase, Dragoi, & Buzsaki, 2003;
Okatan, Wilson, & Brown, 2005), motor cortex (Paninski, Fellows, Shoham,
Hatsopoulos, & Donoghue, 2004; Truccolo, Eden, Fellows, Donoghue, &
Brown, 2005), retina (Pillow et al., 2008), and cultured cortical slice (Rigat,
de Gunst, & van Pelt, 2006). In its simplest form, this model incorporates
both stimulus-dependence terms and direct coupling terms between each
observed neuron in the network; fitting the model parameters leads to an
inhomogeneous (stimulus-driven), nonlinear coupled spiking model with
delay terms. Statistically speaking, the model is attractive due to its explic-
itly probabilistic nature and because fitting the model parameters is surpris-
ingly simple: under certain simple conditions, the log-likelihood function
with respect to the model parameters is concave, and the maximum likeli-
hood estimation of the parameters can be easily performed using standard
ascent methods (Paninski, 2004; Paninski, Pillow, & Lewi, 2007).

Once the model parameters are obtained, we are left with an obvious
question: What do we do next? One of the key applications of such a network
model is to better understand the input-output properties of the network.
For example, we would like to be able to predict the mean firing response of
the network given a novel input and to carve out the impact of the network
coupling terms on this stimulus-response relationship (e.g., what is local
inhibition’s impact on the stimulus filtering properties of the network?). We
would also like to know how the correlation properties of spike trains in
the network might depend on the stimulus, and in general how correlations
might encode stimulus information (Riehle, Grün, Diesmann, & Aertsen,
1997; Hatsopoulos, Ojakangas, Paninski, & Donoghue, 1998; Oram, Hat-
sopoulos, Richmond, & Donoghue, 2001; Nirenberg, Carcieri, Jacobs, &
Latham, 2002; Schnitzer & Meister, 2003; Kohn & Smith, 2005; Pillow et al.,
2008).

We can in general study these questions with direct Monte Carlo simu-
lations. However, simulation of a large-scale probabilistic spiking network
is computationally expensive, since we often need to draw many samples
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(i.e., run many simulated trials) in order to compute the quantities of inter-
est to the desired precision. More importantly direct numerical simulation
often provides limited analytical insight into the mechanisms underlying
the observed phenomena.

The goal of this study is to investigate how much of the behaviors
of these GLM networks can be understood using standard analytical
mean-field approximations (Renart, Brunel, & Wang, 2003; Wilson &
Cowan, 1972; Amit & Tsodyks, 1991; Ginzburg & Sompolinsky, 1994; Hertz,
Krogh, & Palmer, 1991; Kappen & Spanjers, 2000; Gerstner & Kistler, 2002;
Meyer & van Vreeswijk, 2002). In particular, we develop approximations
for the mean firing rates of the network given novel stimuli, as well as
the auto- and cross-correlation and input-output filtering properties of
these networks. These approximations are valid when the contributions
of individual network coupling terms are small and lead to deterministic
ordinary differential equations that are much easier to solve and analyze
than direct Monte Carlo simulation of the network activity.

However, in the case of strong refractory effects, these mean-field ap-
proximations become inaccurate, since the spike history terms in the gener-
alized linear model must be large to induce strong refractoriness, and this
pushes our approximations beyond their region of accuracy. Therefore we
introduce a modified model: a generalized linear model with Markovian
refractoriness. This model has several advantages in this setting: it captures
strong refractoriness, retains all of the easy-fitting properties of the standard
generalized linear model, and leads to much more accurate mean-field ap-
proximations.

2 The Generalized Linear Point Process Model

We begin by precisely defining the generalized linear point process model
(see Figure 1). We consider N recurrently connected spiking neurons, mod-
eled as a multivariate point process (Snyder & Miller, 1991). The firing rate
(conditional intensity function) of neuron i at time t is a function of the total
input, ui (t), the neuron receives:

λi (t) = f (ui (t)), (2.1)

where f (.) is a smooth, nonnegative, and monotonically increasing function.
For numerical simulations, we use exponential nonlinarity, f (u) = eu, but
the analysis in this article is not limited to this exponential nonlinearity. The
total input to the neuron is expressed as the sum of external input Ii and
recurrent input Hi :

ui (t) = Ii (t) + Hi (t). (2.2)
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Figure 1: A schematic illustration of the generalized linear point process model.

The recurrent input is modeled as a sum of identical responses caused by
each presynaptic spike and written as

Hi (t) =
N∑

j=1

∑
tj,n<t

w
j
i (t − tj,n), (2.3)

where w
j
i (t) is a coupling term from neuron j (upper index) to i (lower

index), and tj,n is the nth spike time of neuron j . Without loss of generality,
we may express each coupling term w

j
i (t) as a weighted sum of exponential

functions of different time constants. As we will see below, this sum-of-
exponentials representation is extremely useful: we will take full advantage
of the Markovian nature of the decaying exponential function. To keep
notation under control, we will restrict our attention to the case of a single
exponential function with time constant τ

j
i ,

w
j
i (t) = J j

i exp(−t/τ j
i )�(t), (2.4)

where � is the Heaviside step function, which takes one for positive argu-
ments and zero otherwise; generalizations to the case where w

j
i (t) are given

by a sum of exponentials with different time constants will be left implicit
and will be straightforward in all cases. If we write the output spike train
of neuron i as

Si (t) =
∑

n

δ(t − ti,n), (2.5)
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the recurrent input of equation 2.3 is rewritten as the convolution of the
synaptic filter and the presynaptic spike train:

Hi (t) =
N∑

j=1

∫
ds w

j
i (t − s)Sj (s)

=
N∑

j=1

J j
i h j

i (t) (2.6)

with

h j
i (t) =

∫ t

−∞
e−(t−s)/τ j

i Sj (s) ds. (2.7)

This model is a generalization of the inhomogeneous Poisson process, since
past output spikes modulate the firing intensity function. If we set all the
coupling weights J j

i to zero, we recover the the inhomogeneous Poisson
process model. The model is also closely related to the spike-response model
of Gerstner and Kistler (2002) and the inhomogeneous Markov interval
process of Kass and Ventura (2001), in which the firing rate depends on
only the last observed spike. Note that in the GLM, the firing intensity
of a neuron may depend not only on the last spike of the neuron but on
the past several spikes of this neuron (see, e.g., Paninski, 2004; Paninski
et al., 2007, for further discussion). As mentioned in section 1, this model
is attractive because it is fairly easy to fit to data and seems to capture the
firing statistics of neural populations in a variety of experimental settings.
However, in this article, we will not discuss the estimation problem but
rather limit our attention to the problem of determining the network firing
rate, auto- and cross-correlation functions, and input-output properties,
given fixed, known model parameters.

3 Master Equation

The main object we would like to compute here is P(h, t): this is the dis-
tribution of the state variable h = (h1

1, . . . , hN
N)T at time t. These h j

i are the
solutions of the multivariate coupled Markov process,

dh j
i (t)

dt
= −h j

i (t)

τ
j

i

+ Sj (t), (3.1)

and therefore solving for P(h, t) will allow us to compute a number of
important quantities. For example, to compute the mean firing intensity
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νi (t) = E[Si (t)] of neuron i given some input {Ii (t)}, we may compute

νi (t) =
∫

P(h, t)λi (t)dh

=
∫

P(h, t) f


Ii (t) +

∑
j

J j
i h j

i


 dh,

where E[.] is the average over the spike history {Si (t)|i = 1, . . . , N, 0 ≤ t <

T} in an entire duration T given external input {Ii (t)}. Hence, we can read
the mean firing rate off directly from P(h, t).

We begin by writing down the master equation—the Kolmogorov for-
ward equation that governs the time evolution of this Markov process
(Oksendal, 2002):

∂ P(h, t)
∂t

=
∑
i, j

(
1

τ
j

i

∂
[
h j

i P(h, t)
]

∂h j
i

)
+

∑
j

λ j (h − e j , t)P(h − e j , t)

−
∑

j

λ j (h, t)P(h, t), (3.2)

with λi (h, t) = f (Ii (t) + ∑
j J j

i h j
i ) as in equation 2.1 and the term e j de-

noting the vector with its {i ′ j ′} slot δ j j ′ . Note that there are no diffusion
terms here; the random nature of the stochastic differential equation enters
instead through the jump terms.

While this jump-advection partial differential equation (PDE) in prin-
ciple completely describes the behavior of this system, unfortunately this
equation remains difficult to handle analytically (due to the nonlinearity in
the λ terms) and numerically (due to the large dimensionality of the state
variable h). We will pursue a direct analysis of this PDE elsewhere; here, we
will attack this system using a different approach, based on a self-consistent
expansion of the first and second moments of Si (t).

In the one-dimensional case (i.e., a single neuron, with one h(.)), how-
ever, we may easily solve the PDE numerically to obtain an exact solution
for the mean firing rate. Figure 2 compares this exact solution versus the
mean-field approximations derived in the following section. The mean-
field approximation is reasonably good here but not perfect, because of the
fluctuation in the recurrent input (J = −1, τ = 10 ms).

4 Mean-Field Approximation of GLM Statistics

Now we turn to the main topic of this article. As emphasized above,
we would like to calculate the mean-firing intensities of neurons, νi (t) =
E[Si (t)], or the spike-cross-correlation function between neurons, φi j (t, t′) =
E[Si (t)Sj (t′)]. The calculation of these statistics is difficult, however, because
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Figure 2: Direct solution of the master equation in the one-dimensional case.
(A) Top: A single neuron is simulated with a pulse input I (t) shown. Bottom:
Comparison of the firing rates computed via direct Monte Carlo sampling (sim-
ulation); the inhomogeneous Poisson case, with no history dependence, that is,
w = 0 (noH); the master equation of equation 3.2 (exact); and the mean-field ap-
proximation methods in the limit of Nc → ∞ introduced in section 4. The mean-
field approximation gives good approximations of the output firing intensity. (B)
Top: The probability distribution P(h, t); grayscale axis indicates the height of
the probability density. The self-history term h(t) was the convolution of the out-
put spike train and a single exponential filter with time constant τ = 10 ms and
weight J = −1; thus, the neuron was inhibited for a brief period following each
spike. Note the discontinuous behavior visible at stimulus onset, where prob-
ability mass jumps significantly toward h = 1, then decays back down toward
zero, according to equation 3.1. Bottom: The mean of h calculated from the prob-
ability distribution P(h, t). This E[h] also increases following the input pulse,
which has the effect of slowing the firing rate. Since the weight J is negative, the
history term is inhibitory here. (A color version of this figure is available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2008.04-08-757.)

of the nonlinearity f and the recurrent input term H in the model. A typical
way of approximating these recurrent effects is to replace the interaction
term H by its mean field (Renart et al., 2003; Wilson & Cowan, 1972; Amit
& Tsodyks, 1991; Ginzburg & Sompolinsky, 1994; Hertz et al., 1991; Kappen
& Spanjers, 2000; Gerstner & Kistler, 2002; Meyer & van Vreeswijk, 2002).

Let us assume that each neuron receives input from some subset, Nc , of
the total population of neurons N. If the synaptic strength scales J ∼ 1/Nc

with Nc , and assuming that the population is in the “asynchronous” state,
then it is known that the cross-covariance function between two neu-
rons �φi j (t, t′) = Cov[Si (t), Sj (t′)] scales with 1/Nc for large Nc (Ginzburg
& Sompolinsky, 1994). This means that the contribution of each network
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interaction term is negligible and all the neuron activities are independent
in the Nc → ∞ limit. Hence, calculating the mean-firing intensities and
cross-correlations is easy in this limit.

We first derive the mean-firing intensity in the limit of Nc → ∞ and then
evaluate the finite-size effect of order 1/Nc . Note that this mean-field solu-
tion is a good approximation not only when Nc is very large; equivalently,
this is a good approximation when the synaptic coupling J is small for fixed
Nc , where the contribution of an individual synapse is small.

Now our first key approximation is to appeal to the central limit theorem
applied to the sum of equation 2.6, and to assume that the recurrent input
H is roughly gaussian. We can express the mean firing intensities of the
neurons in our network as a function of two sufficient state variables: the
mean recurrent input E[H] and the variance of the recurrent input Var[H],

νi (t) = E[λi (t)]

= E[ f (Ii (t) + Hi (t))]

≈ F (Ii (t) + µi (t), σi (t)), (4.1)

where, in the third line, the distribution of the recurrent input, Hi (t), is
assumed to be gaussian with mean µi (t) = E[Hi (t)] and variance σ 2

i (t) =
Var[Hi (t)], and the expectation was replaced by a gaussian integral:

F (µ, σ ) =
∫

f (u)√
2πσ 2

e− (u−µ)2

2σ2 du. (4.2)

Note for an exponential nonlinearity f (u) = eu, the gaussian integral is
given by F (µ, σ ) = exp(µ + σ 2/2).

Next we calculate the cross-correlation function,

φi j (t, t′) = E[Si (t)Sj (t′)]

= δi jδ(t − t′)E[Si (t)] + �(t − t′)E[λi (t)Sj (t′)]

+�(t′ − t)E[Si (t)λ j (t′)]

= δi jδ(t − t′)νi (t) + �(t − t′)νi j (t | t′)ν j (t′)

+�(t′ − t)ν j i (t′ | t)νi (t), (4.3)

where in the second line, we decomposed the correlation function into
the three terms: the first term shows the simultaneous correlation with
its amplitude proportional to the firing intensity due to the point-process
nature of the spike train, the second term shows the correlation when t > t′

(the spike variable Si (t) is averaged given past spike history to yield λi (t)),
and the third term is the correlation for t′ > t. In the third line, we introduced
conditional firing intensity,

νi j (t | t′) = E[Si (t) | spike of j at t′] = E[Si (t)Sj (t′)]
E[Sj (t′)]

, (4.4)
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which describes the probability of neuron i firing at t given the spike of j at
t′. We also introduce an abbreviation in the following and write E[.|Sj (t′)]
instead of E[.|spike of j at t′]. Similar to the approximation in equation 4.1,
we assume a gaussian distribution of H given a spike of neuron j at time t′

to find

νi j (t | t′) = E[λi (t) | Sj (t′)]

= E[ f (Ii (t) + Hi (t)) | Sj (t′)]

≈ F (Ii (t) + µi j (t | t′), σi j (t | t′)) (4.5)

for t > t′ with conditional mean, µi j (t | t′) = E[Hi (t) | Sj (t′)], and condi-
tional variance, σ 2

i j (t | t′) = Var[Hi (t) | Sj (t′)]. Note that equation 4.5 is valid
only for t > t′; if t < t′ instead, we evaluate ν j i (t′ | t) and use the Bayes
theorem to calculate νi j (t | t′) = ν j i (t′ | t)νi (t)/ν j (t′). The unconditional and
conditional mean and variance of H in equations 4.1 and 4.5 are evaluated
as

µi (t) =
∑

k

J k
i αk

i (t),

µi j (t | t′) =
∑

k

J k
i αk

i j (t | t′),

σ 2
i (t) =

∑
k,l

J k
i J l

i Akl
i (t),

σ 2
i j (t | t′) =

∑
k,l

J k
i J l

i Akl
i j (t | t′), (4.6)

where we defined

αk
i (t) = E

[
hk

i (t)
] =

∫ t

−∞
ds e−(t−s)/τ k

i νk(s),

αk
i j (t | t′) = E

[
hk

i (t) | Sj (t′)
] =

∫ t

−∞
ds e−(t−s)/τ k

i νk j (s | t′),

Akl
i (t) = Cov[hk

i (t), hl
i (t)]

=
∫ t

−∞
ds

∫ t

−∞
ds ′ e−(t−s)/τ k

i −(t−s ′)/τ l
i �φkl (s, s ′),

Akl
i j (t | t′) = Cov

[
hk

i (t), hl
i (t) | Sj (t′)

]
=

∫ t

−∞
ds

∫ t

−∞
ds ′ e−(t−s)/τ k

i −(t−s ′)/τ l
i Cov[Sk(s), Sl (s ′) | Sj (t′)],

(4.7)
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with �φkl (s, s ′) = φkl (s, s ′) − νk(s)νl (s ′). The evolution of αk
i , α

k
i j , and Akl

i in
equation 4.7 follows simple ordinary differential equations (ODEs) and is
easy to simulate,

d
dt

αk
i (t) =−αk

i (t)
τ k

i
+ νk(t),

d
dt

αk
i j (t | t′) =−αk

i j (t | t′)

τ k
i

+ νk j (t | t′),

d
dt

Akl
i (t) =−

(
1
τ k

i
+ 1

τ l
i

)
Akl

i (t) + lim
ε→0

[∫ t+|ε|

−∞
e−(t−s)/τ k

i �φkl (s, t) ds

+
∫ t−|ε|

−∞
e−(t−s ′)/τ l

i �φkl (t, s ′) ds ′
]

=− Akl
i (t)
τ kl

i
+ lim

ε→0

[∫ t+|ε|

−∞
e−(t−s)/τ k

i �νkl (s | t)νl (t) ds

+
∫ t−|ε|

−∞
e−(t−s ′)/τ l

i �νlk(s ′ | t)νk(t) ds ′
]

=− Akl
i (t)
τ kl

i
+ �αk

il (t
+ | t)νl (t) + �αl

ik(t− | t)νk(t), (4.8)

where 1/τ kl
i = 1/τ k

i + 1/τ l
i , �νi j (t | t′) = νi j (t | t′) − νi (t), �φkl (s, s ′) = �νkl

(s | s ′)νl (s ′) = �νlk(s ′ | s)νk(s), �αk
i j (t | t′) = αk

i j (t | t′) − αk
i (t), and �αk

il (t
± |

t) = limε→0 �αk
il (t± | ε || t). Note that the differentiation of Akl

i (t) for k = l is
a little tricky because �φkl (s, s ′) has a delta peak at s = s ′. While the defini-
tion of Akl

i (t) in equation 4.7 is clear, we have to make sure in the evaluation
of d Akl

i (t)
dt not to double-count the integration of the delta peak. Hence, in

the third equation of equation 4.8, we included the delta peak along the
integration over s (including the peak at s = t) but excluded this peak from
the integration along s ′ (excluding the peak at s ′ = t).

4.1 Solution in the Mean-Field Limit. In this section we evaluate mean
firing intensities, νi , and cross-correlation functions, φi j , in the mean-field
limit of Nc → ∞ (which is also valid in the noncoupled limit J → 0 for finite
Nc), that is, synaptic strengths are scaled J ∼ 1/Nc so that the individual
contribution of a spike is negligible for large Nc ; and we also assume, as
discussed above, that the network is in the asynchronous state. Under these
conditions, the cross-covariances between neurons are known to scale as
�φi j ∼ 1/Nc for i 	= j and �φi j ∼ 1 for i = j (Ginzburg & Sompolinsky,
1994). Then we can easily see σ 2

i (t) ∼ 1/Nc because Akl
i ∼ 1 for k = l and

Akl
i ∼ 1/Nc for k 	= l from equation 4.7. Hence, in the limit of Nc → ∞, we
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obtain from equations 4.1 and 4.8,

νi (t) → f (Ii (t) + µi (t)) ,

µi (t) =
∑

k

J k
i αk

i (t),

d
dt

αk
i (t) = −αk

i (t)
τ k

i
+ νk(t). (4.9)

This self-consistent update rule corresponds to a well-known mean-field
dynamics of the mean-firing intensity (Ginzburg & Sompolinsky, 1994).
Similarly, the scaling of cross-covariance �φi j ∼ 1/Nc for i 	= j implies
�αk

i j (t | t′) ∼ 1/Nc for k 	= j and �αk
i j (t | t′) ∼ 1 for k = j from equation 4.7.

Moreover the conditional covariance Cov[Sk(s), Sl (s ′) | Sj (t′)] scales with
1/Nc for k 	= l 	= j and thus σ 2

i j (t | t′) ∼ 1/Nc . Hence, in the limit of Nc → ∞,
we find νi j (t | t′) → νi (t) for t > t′ and, from equation 4.3,

�φi j (t, t′) → δi jδ(t − t′)νi (t). (4.10)

These equations are very easy to simulate, and the approximation of the
mean-firing intensity is good even for a small Nc if J is small (see Figure 2A).
On the other hand, the mean-field approximation is not good for large J
(see Figures 3 and 4B). This is because, for fixed Nc , the fluctuation of the
recurrent input increases with J , making the mean-field assumption (which
neglects these fluctuations) invalid. Figure 4 shows the cross-correlation
functions between two neurons. Because the self-interaction term J ∼ 1/Nc

vanishes for the large Nc limit, the autocorrelation function in this limit can
capture the Poisson peak only at t = t′; it does not capture any nontrivial
correlation caused by the interaction term J for finite Nc (see Figure 4).

4.2 Estimating the Finite Size Effect. In the previous section, we cal-
culated the mean-firing intensity, νi (t), and the cross-covariance function,
φi j (t, t′), in the Nc → ∞ limit. Ideally, once provided the true σ 2

i j (t | t′)
term, which is of order 1/N2

c different from σ 2
i (t), we can iteratively

evaluate equations 4.1 to 4.8, starting from the mean-field limit solution
of equations 4.9 and 4.10 to find the precise approximation of νi (t) and
φi j (t, t′) as long as the gaussian H assumption is valid. However, we need
the third-order correlations to evaluate σ 2

i j (t | t′), and the equations are not
closed. Here, we give up evaluating O(1/N2

c ) terms and just evaluate the
finite size corrections of νi (t) and φi j (t, t′) up to O(1/Nc) terms. Up to this
order, it can be argued that σ 2

i j (t | t′) ≈ σ 2
i (t), and under this approximation,

we obtain a self-consistent expression for νi (t) and φi j (t, t′). Equations 4.1
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Figure 3: Comparison of the direct Monte Carlo simulation of a single neu-
ron (solid), the firing intensity without recurrent input H (dotted), and the
mean-field approximation (dashed). (A) Low step input (baseline I = 2, peak
I = 4) is applied. The self-inhibition term is set to J = −5 and τ = 2 ms. (B)
High step input (baseline I = 2, peak I = 8) is applied. The self-inhibition
term is set to J = −5 and τ = 2 ms. Because of the large nongaussian fluc-
tuations of input caused by the strong self-inhibition, the mean-field approxi-
mation loses accuracy here. (A color version of this figure is available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2008.04-08-757.)

and 4.5 yield, up to the first order of 1/Nc ,

νi (t) = F (Ii (t) + µi (t), σi (t)),

νi j (t | t′) = F (Ii (t) + µi j (t | t′), σi (t)),
(4.11)

where σ 2
i j (t | t′) ≈ σ 2

i (t) to the first order of 1/Nc . Equation 4.11 can be eval-
uated using equations 4.6 to 4.8, which we repeat here for convenience:

µi (t) =
∑

k

J k
i αk

i (t),

µi j (t | t′) =
∑

k

J k
i αk

i j (t | t′),

(σi (t))2 =
∑
k,l

J k
i J l

i Akl
i (t), (4.12)

d
dt

αk
i (t) =−αk

i (t)
τ k

i
+ νk(t),

d
dt

αk
i j (t | t′) =−αk

i j (t | t′)

τ k
i

+ νk j (t | t′),

d
dt

Akl
i (t) =− Akl

i (t)
τ kl

i
+ �αk

il (t
+ | t)νl (t) + �αl

ik(t− | t)νk(t).
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Figure 4: Comparison of cross-correlation functions of two neurons calculated
by direct simulation (solid), calculated from the mean-field approximation (see
equations 4.9 and 4.10; dashed), and the mean-field approximation with fi-
nite size correction (see equations 4.11 and 4.12; dot-dashed). (A) Weak self-
interaction. Parameters are set to J11 = −1, J22 = −1, J21 = 1, J12 = −0.5, τ11 =
10 ms, τ22 = 10 ms, τ21 = 10 ms, τ12 = 20 ms, and I1 = 2, I2 = 4. The result with
finite size correction is obtained after five iterations of the self-consistent equa-
tions. The calculation in the mean-field limit captures only the steady-state firing
intensity, not any temporal cross-correlation function. Cross-correlation func-
tions are well approximated with the finite-size correction terms. (B) Strong self-
interaction: parameters are set to J11 = −5, J22 = −5, J21 = 1, J12 = −0.5, τ11 =
2 ms, τ22 = 2 ms, τ21 = 10 ms, τ12 = 20 ms, and I1 = 2, I2 = 4. Because of the
large nongaussian fluctuation of the input caused by the strong self-inhibition
term, the mean-field approximation does not work very well. In this case the
finite size solution converges rather slowly. Hence, the result is after 10 itera-
tions of the self-consistent equations. (A color version of this figure is available
online at http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2008.04-
08-757.)

In principle, the above equations are valid even with time-dependent
input, and several iterations of the above set of equations yield time-
dependent cross-correlation functions. However, evaluation of the above
equations is computationally expensive with time-dependent input. If one
neuron is connected to Nc surrounding neurons and time is discretized into
T time bins, it takes O(N2 · Nc · T2) operations and memory to evaluate
αk

i j (t | t′). If the input is constant in time, αk
i j (t | t′) is a function of t − t′ only,

and just O(N2 · Nc · T) operations are required to solve the equations. There-
fore, we focus on calculating the finite size effect for constant input in this
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article.1 Generally several iterations of the above set of equations are
required for the convergence of mean firing intensities and cross-
correlations. However, by initially setting those variables to the solution
in the limit of Nc → ∞, we found good approximations after a couple of
iterations in many cases.

The mean firing rate and cross-correlation functions calculated from
equations 4.11 and 4.12 are precise for small J and large Nc because the
recurrent input is close to gaussian in this case (see Figure 4A). On the other
hand, for large J and small Nc , the gaussian input approximation is poor,
and therefore the approximation becomes worse (see Figure 4B). One key
result here is that both the autocorrelations and the cross-correlations in
these networks depend on the inputs I (t) in general, as can be seen from
equations 4.6 to 4.8. Changing just the baseline (mean) of the input I (t) can
significantly change the correlation structure in the network as seen in a
number of physiological preparations (e.g., Hatsopoulos et al., 1998; Kohn
& Smith, 2005), even if the coupling terms J and w are unchanged.

4.3 Linear Input-Output Filter. The ODE derived in equation 4.9 is
general and may be applied given arbitrary time-dependent input {Ii (t)}.
In this section, we exploit these equations to explore the linear response
properties of these spiking networks. A standard physiological technique
is white noise analysis (Marmarelis & Marmarelis, 1978; Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997), in which we inject white noise
input in order to study a network’s input-output filtering properties. When
this analysis is applied to our GLM system, the external input is given by
Ii (t) = ∫

Ki (t − s)ξi (s) ds, where Ki is neuron i ’s linear stimulus filter and
ξi (t) is the white noise stimulus with mean 〈ξ (t)〉 = ξ

(0)
i and small variance

〈(ξi (t) − ξ
(0)
i )(ξ j (t′) − ξ

(0)
j )〉 = σ 2

ξ δi jδ(t − t′). We keep the input variance small
here in order to treat the input as almost constant and develop a consistent
linear response theory. Note that 〈.〉 describes the average over the fluctu-
ating stimulus ξi (t) here. We use δX = X − 〈X〉 for any function X of input
stimulus and neglect O(δ I 2) terms in the following calculations.

Let us summarize the calculations in the mean-field (Nc → ∞) limit. The
mean-firing intensity of a neuron is given by the following self-consistent
equations:

νi (t) = f (Ii (t) + µi (t)),

µi (t) =
∑

k

∫
wk

i (t − s)νk(s) ds. (4.13)

1Note that the computational complexity to calculate the finite size effect is not N2 but
N2 · Nc because each synaptic time constant, τ k

i , is distinct. Hence, we needed to evaluate
each αk

i j = E[hk
i | Sj ] term separately. However, if all the synaptic constants onto each

neuron are constant, that is, τ k
i = τi , we can directly evaluate µi j = ∑

k J k
i αk

i j without
evaluating αk

i j separately, and the computational complexity to evaluate the finite size
effect reduces to O(N2 · T).
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Figure 5: Comparison of (A) a simulated firing rate of a single neuron and
(B) the self-consistent solutions of equation 4.13 for different input levels,
I (0), and self-inhibition strengths, J . (C) The percentage errors of the mean-
field approximation are shown with respect to the simulated firing inten-
sity. We set τ = 10 ms. (A color version of this figure is available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2008.04-08-757.)

In particular, for a constant stimulus, ξi (t) = ξ
(0)
i , we obtain

ν
(0)
i = f

(
I (0)
i + µ

(0)
i

)
,

µ
(0)
i =

∑
k

τ k
i J k

i ν
(0)
k (4.14)

from equation 2.4. Note that X(0) describes responses at constant stimulus
ξ

(0)
i , for example, I (0)

i = ξ
(0)
i

∫
K (t) dt. We can solve the zeroth-order terms

in equation 4.14 self-consistently by finding the roots of the equations ν
(0)
i =

f (I (0)
i + ∑

k τ k
i J k

i ν
(0)
k ). In Figure 5, we compare this self-consistent mean-field

solution with numerical simulation of a single neuron as a function of con-
stant input, I (0), and self-inhibition strength J . We see that the approxima-
tion is good for small values of self-interaction J , but that the error increases
with | J | and I (0), as expected given the analysis in the previous section.

To perform the linear response analysis, we require the first-order terms.
Differentiation of equation 4.12 with respect to stimulus perturbation, δξ ,
yields

δνi (t) = f ′(I (0)
i + µ

(0)
i

)
(δ Ii (t) + δµi (t))

= f ′(I (0)
i + µ

(0)
i

) ∫
Ki (t − s)δξi (s) ds + f ′(I (0)

i + µ
(0)
i

)

×
∑

k

∫
wk

i (t − s)δνk(s) ds. (4.15)

Now we can rewrite equation 4.15 by introducing vector notation as

δν(t) =
∫

(K(t − s)δξ (s) + w(t − s)δν(s)) ds, (4.16)
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Figure 6: Comparison of the analytically derived and simulated input-output
filters. (A) A simulated normalized linear input-output filter for I (0) = 2 (thin-
dotted) and I (0) = 4 (thick-dotted) is compared with analytical results at I (0) = 2
(thin-solid) and I (0) = 4 (thick-solid) of equation 4.18. Because the strength
of the self-inhibition component changes with the baseline input through
f ′(I (0) + µ(0)), the input filter is sharpened for high baseline input. Other param-
eters are set to J = 1, τ = 10 ms, K (t) = e−t/τI �(t) with τI = 20 ms and σξ = 1 Hz.
All filter amplitudes are normalized by their maximum amplitudes. (B) Left pan-
els show the comparison of analytically derived input-output filters G11(t) and
G12(t) of equation 4.20 (solid lines) and simulated input-output filters (dotted
lines) for I (0) = 2 (thin lines) and I (0) = 4 (thick lines). Right panels show neuron
1’s spatiotemporal input-output filter G̃1(t, z) for I (0) = 2 (top) and I (0) = 4 (bot-
tom). See the text for parameter values. (A color version of this figure is available
online at http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2008.04-
08-757.)

where we defined [K(s)]i j = δi j f ′(I (0)
i + µ

(0)
i )Ki (s) and [w(s)]i j = f ′(I (0)

i +
µ

(0)
i )w j

i (s). Therefore, the Fourier transformation of equation 4.16 yields

δν̂(ω) = K̂(ω)δξ̂ (ω) + ŵ(ω)δν̂(ω)

= Ĝ(ω)δξ̂ (ω), (4.17)

with a gain function G(t) = ∫ dω
2π

e iωt[I − ŵ(ω)]−1 K̂(ω). Note that I is an
identity matrix here (not the input vector). We should note that a mathe-
matically identical linear response filter was derived for a related model in
Ginzburg and Sompolinsky (1994). One difference is that in their model,
spinlike binary variables flip depending on input level with a fixed time
constant. This corresponds, in our model, to the case that all the synaptic
time constants τ

j
i are identical. Hence, the linear response filter in equa-

tion 4.17 is a natural generalization of their result.
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We show in Figure 6A a simulated normalized receptive field of a single
neuron and the analytical result of equation 4.17. In this single-neuron case,
where K is set to be a single exponential function with time constant τI , for
simplicity, the Fourier transformations of the synaptic filter and the input
filter are ŵ(ω) = τ/(1 + iωτ ) and K̂ (ω) = τI /(1 + iωτI ), respectively. In this
case, we obtain, after a Fourier inverse transformation by a Cauchy integral,

G(t) = f ′

1 + J f ′τ−
e−t/τI + J f ′2τ−

1 + J f ′τ−
e−(1/τ−J f ′)t, (4.18)

where τ− = (1/τI − 1/τ )−1 and f ′ = f ′(I (0) + µ(0)). We see that the linear
response may be described as a combination of the stimulus-filter term K
along with an additional term due to the recurrent filter w. Of course, in
the limit J → 0, we recover G → f ′K . Note also that the input-output filter
changes with the baseline input through f ′. In the case of the exponential
nonlinearity, f , and J < 0, the larger the input baseline, the sharper the
linear filter. This is because the effective strength of of the spike history
effect is modulated by the input-output nonlinearity and the baseline input
level (see, e.g., Bryant & Segundo, 1976, for some similar effects in an in
vitro physiological preparation).

Next, we calculate how interactions between neurons can change the
input-output filter. For concreteness, we consider two neurons that re-
ceive a spatiotemporal white noise stimulus ξ (z, t) with unit variance.
Input to the neuron i is described by ξi (t) = ∫ ∞

−∞ dzLi (z)ξ (t, z), where
Li (z) = 1√

2π
e−(z−zi )2/2 are spatial filters with means z1 = 1 and z2 = −1.

For simplicity, we assume that two neurons receive the same baseline of
input, I (0)

1 = I (0)
2 = I (0) with an identical temporal stimulus filter, K (t) =

e−t/τI �(t), and have symmetric synaptic interactions J12 = J21 = J = −1,
J11 = J22 = 0, and τ k

i = τI = τ = 10 ms. The derivative of the nonlinear
function is described by f ′

i = f (I (0)
i + µ

(0)
i ) for i = 1, 2. Proceeding as above,

we can calculate the spatiotemporal input-output filter of neuron i as
G̃i (t, z) = ∑

j Gi j (t)L j (z). Similar to the previous single-neuron case, the
Fourier transformation of the temporal stimulus filter is [K̂(ω)]i j = δi j

f ′
i

1/τ+iω ,
while the synaptic filter is [ŵ(ω)]i j = f ′

i J i j

1/τ+iω , which yield the Fourier trans-
formation of the temporal input-output filter,

Ĝ(ω) = [I − ŵ(ω)]−1 K̂(ω)

= 1/(1/τ + iω)
1 − ( f ′

1 f ′
2 J 2)/(1/τ + iω)2

×
(

f ′
1 f ′

1 f ′
2 J /(1/τ + iω)

f ′
1 f ′

2 J /(1/τ + iω) f ′
2

)
. (4.19)
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After a Fourier inverse transformation using Cauchy integration, we find

G(t) = e−t/τ�(t)

(
f ′
1 cosh(

√
f ′
1 f ′

2 J t)
√

f ′
1 f ′

2 sinh(
√

f ′
1 f ′

2 J t)√
f ′
1 f ′

2 sinh(
√

f ′
1 f ′

2 J t) f ′
2 cosh(

√
f ′
1 f ′

2 J t)

)
.

(4.20)

Figure 6B compares the analytically derived input-output filter of equa-
tion 4.20 with numerical simulation for different input baseline I (0) = 2 and
I (0) = 4. Figure 6B, also shows the spatiotemporal input-output filter of
neuron 1, G̃1(t, z) = G11(t)L1(z) + G12(t)L2(z), for the two input baselines.
Under large input baseline conditions, we see stronger interactions between
the two neurons and, hence, significant differences in the effective input-
output filtering properties of the neuron in the two conditions. Thus, as
emphasized above, the filtering properties of the network can change in a
stimulus-dependent way, without any changes in the system parameters
K , J , or w. (See, e.g., Pillow et al., 2008, for some related results concerning
the effects of interneuronal coupling terms on the filtering properties of
populations of primate retinal ganglion neurons.)

5 The Generalized Linear Point Process Model with Markov
Refractoriness

In section 4, we saw that we could derive simple approximate expressions
for many important quantities (firing rate, correlations) in the basic general-
ized linear point process model as long as the individual synaptic coupling
terms | J | are not so large that the accuracy of the mean-field expansion is
compromised (see Figures 3 and 4).

In particular, the small | J | condition is likely acceptable for the multi-
neuronal coupling terms, since in many cases, the inferred coupling
parameters—in motor cortex (Paninski et al., 2004; Truccolo et al., 2005)
and retina (Pillow et al., 2008), for example—have been empirically found
to be small (though larger network effects are found in hippocampus; see
Harris et al., 2003; Okatan et al., 2005). Similarly, we might expect the “slow”
self-inhibition terms in the GLM (the terms responsible for adaptation in
the firing rate, for example) to be relatively small as well (Pillow, Paninski,
Uzzell, Simoncelli, & Chichilnisky, 2005; Truccolo et al., 2005).

However, it is clear that the generalized linear model with small weights
| J | will not be able to account for the strong refractoriness that is a funda-
mental feature of neural point-process dynamics at fine timescales: in the GL
model, strong, brief inhibition is produced by large, negatively weighted,
and sharply decaying history effects wi

i (t), and these large wi
i (t) terms spoil
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our mean-field approximation. Thus, it is clear that we need to adapt the
methods introduced above in order to handle strong refractory effects.

One possible solution would be to take a discrete-time approach: instead
of modeling neural responses as point processes in continuous time, we
could simply model each cell’s spike count within a discrete-time bin as a
Bernoulli random variable whose rate νi (t) is an increasing function of ui (t),
very much as in the continuous-time model described above (Chornoboy
et al., 1988; Okatan et al., 2005). This discrete-time Bernoulli model shares
much of the ease of fitting (including concavity of the log likelihood; Escola
& Paninski, 2007) as the continuous-time model. In fact, the discrete-time
model converges in a natural sense to the continuous-time model as the time
binwidth dt becomes small. The advantage of this discrete-time formalism is
that the firing rate νi (t) can never exceed 1/dt (since the Bernoulli probabili-
ties νi (t) dt cannot exceed one), and therefore, in a crude sense, the discrete-
time model has a refractory effect of length dt. A mean-field analysis can
be developed for this discrete-time model, which exactly mirrors that de-
veloped above in the continuous-time model. We simply need to exchange
our ordinary differential equations for discrete-time difference equations.

Of course, this discrete-time approach is unsatisfactory in at least one
respect, since we would like, if possible, to model the firing behavior of
neurons down to a millisecond timescale (Berry & Meister, 1998; Keat,
Reinagel, Reid, & Meister, 2001; Pillow et al., 2005; Paninski et al., 2007), and
the discrete-time approach, by construction, ignores these fine timescales.
Thus, we introduce a model that allows us to incorporate strong refractory
effects directly. We set the rates,

λi (t) = f (ui (t))I (xi (t) = M), (5.1)

where f (.) and ui (t) are defined as in section 4 and I (.) is the indicator
function that takes the value 1 if the argument is true. We have introduced
an auxiliary refractory variable xi (t), which takes a discrete state from 1 to
M. We assume that this variable xi (t) is itself Markovian, with transition
rates

Wi (t) =




−1/τr 0 0 0 Si (t)

1/τr −1/τr 0 0 . . . 0

0 1/τr −1/τr 0 0
...

. . . −Si (t)


 ; (5.2)

that is, when xi (t) is in state M, it will transition to state 1 with each spike,
and then transitions occur from state m to state m + 1 with rate 1/τr un-
til xi (t) has reached the spiking state M once again. Refractoriness in this
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model is enforced because the neuron is silent whenever xi (t) is in one of
the postspike quiescent states xi (t) < M. It is easy to see that this is a kind of
inhomogeneous renewal model (the delay τd required for the state variable
xi to move from state 1 to first reach the active state M is a sum of (M − 1)
independent and identically (i.i.d.) distributed exponential random vari-
ables of mean τr , and so τd is an i.i.d. gamma variable with parameters
(M − 1, 1/τr )) and may be considered a special case of the “inhomoge-
neous Markov interval” model introduced by Kass and Ventura (2001). By
adjusting the number of states M and the rate 1/τr , we may adjust the re-
fractory properties of the model: for example, M = 1 implies that we have
an inhomogeneous Poisson model, while M = 2 provides an exponentially
decaying relative refractory effect, and if we let M be large, with τr scaling
like τr ∼ τ/M, we obtain an absolute refractory effect of length τ .

Finally, it is easy to show that the additional Markov term in the definition
of the rate λi (t) does not have a negative impact on the estimation of the
GL model parameters J given spiking data; as discussed in Paninski (2004),
maximizing the likelihood in this model (or constructing an EM algorithm,
as in Escola & Paninski, 2007) requires that we maximize a nonnegatively
weighted version of the standard point-process log likelihood, and this
weighted log likelihood retains all of the concavity properties of the original
GL model. Thus, this new model requires just a single concave optimization
and is as easy to fit as the standard GL point process model. The advantage
is that a strong relative refractory effect is intrinsic to the model and does
not need to be enforced by a large, brief, negative wi

i (t) term. Instead, we
may use small adjustments to the J i

i terms to fine-tune the model to match
the short-time details of the observed interspike interval density.2 As we
will see below, this leads to much more accurate mean-field approximations
of the firing rates and correlation functions in these networks.

Let us define the probability pi (t) = (P(xi (t) = 1), . . . , P(xi (t) = M))T

that the neuron i is in state xi (t) = 1, . . . , M. Note that the boldface charac-
ters denote vectors. The dynamics of pi is described by

d pi (t)
dt

= Wi (t) pi (t), (5.3)

2In this article, we mostly use M = 3 (except for Figure 7B, where the effect of abrupt
refractoriness is studied), because this is the smallest value of M that requires the following
mean-field formulation (we do not need a vector formulation for an M = 2 case because
there is only one degree of freedom that corresponds to the probability of being in the
active state). It is worth noting that Escola and Paninski (2007) discuss methods for
additionally estimating an optimal transition matrix Wi (t) via an EM algorithm. This
provides another method for adjusting the short-time details of the model’s responses. In
addition, we may extend many of the mean-field methods developed below to the case
of more general rate matrices Wi (t). However, for simplicity, we will not pursue these
extensions here.
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where Wi (t) has the same elements as Wi (t) of equation 5.2 except for

[Wi (t)]1M = −[Wi (t)]MM = E[Si (t) | xi (t) = M]

= E[Si (t)I (xi (t) = M)]
E[I (xi (t) = M)]

= νi (t)
pi (t)

, (5.4)

which describes the probability of neuron i firing at time t given xi (t) = M.
Note that we used νi (t) = E[Si (t)] = E[Si (t)I (xi (t) = M)] and wrote the last
component of pi (t) as [ pi (t)]M = pi (t).

We also define [ pi j (t | t′)]m = E[I (xi (t) = m) | Sj (t′)] as the probability of
neuron i being in state m given a spike of neuron j at time t′. In particular,
the last component is written as pi j (t | t′) = [ pi j (t | t′)]M. The evolution of
pi j (t | t′) is described by a similar equation,

d pi j (t | t′)
dt

= Wi j (t | t′) pi j (t | t′), (5.5)

where the transition matrix Wi j (t | t′) has the same elements as Wi (t) of
equation 5.2 except for

[Wi j (t | t′)]1M = −[Wi j (t | t′)]MM = E[Si (t) | xi (t) = M, Sj (t′)]

= E[Si (t)I (xi (t) = M) | Sj (t′)]
E[I (xi (t) = M) | Sj (t′)]

= νi j (t | t′)
pi j (t | t′)

. (5.6)

Before turning to “mean-field” approximation, it is worth noting that we
may solve for the firing rates and correlations exactly in the special case
of no synaptic couplings, J = 0. (The analogous case in the standard GL
model is the inhomogeneous Poisson case, which is of course trivial.) We
can proceed by exploiting either the renewal nature of the model (Gerstner
& Kistler, 2002), which leads to convolution or infinite-sum formulas for
the firing rate, or the Markovian structure, which leads to somewhat more
intuitive ordinary differential equations. We pursue the second approach
here.

In this case, the mean firing intensity is given by

νi (t) = E[ f (Ii (t))I (xi (t) = M)] = f (Ii (t))pi (t). (5.7)
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This in turn gives, together with equation 5.4, [Wi (t)]1M = −[Wi (t)]MM =
f (Ii (t)). Hence, we can find the dynamics of mean firing intensity by solving
equation 5.3. In the special case of constant input Ii , it is easy to solve the
fixed point of pi (t); we find for the last component that pi = [1 + (M −
1)τr f (Ii )]−1.

The autocorrelation function in this case is similarly easy to derive. (Note
that the cross-covariance functions are zero in this J = 0 case, since the
cross-coupling terms are set to zero.) In case of no couplings, J = 0, the
conditional firing intensity is given by

νi j (t | t′) = E[ f (Ii (t))I (xi (t) = M) | Sj (t′)] = f (Ii (t))pi j (t | t′) (5.8)

for t > t′. We find those corner elements of Wi j (t | t′) as

[Wi j (t | t′)]1M = −[Wi j (t | t′)]MM = f (Ii (t)) (5.9)

for t > t′. This means that Wi j (t | t′) = Wi (t) for t > t′. Hence, pi j (t | t′) fol-
lows the same differential equation as pi (t) in this J = 0 case but starting
from the initial condition

pi j (t | t−) = lim
ε→0

pi j (t | t− | ε |)

= δi j (1, 0, . . . , 0)T + (1 − δi j ) pi (t) (5.10)

because the state xi is reset to state 1 just after a given spike of neuron i .
In the following sections, we apply mean-field approximations for the

firing rates and correlations in the nonzero J case.

5.1 Mean-Field Approximation of the GL Model with Markov Re-
fractoriness. Let us approximate the mean firing intensity and the cross-
correlations of GL model with Markov refractoriness assuming that the
contribution of individual synaptic coupling is small. Similar to the calcula-
tion without the Markov refractoriness, we assume a gaussian distribution
of recurrent input Hi (t) given xi (t) = M to find

νi (t) = E[ f (ui (t))I (xi (t) = M)]

= E[ f (ui (t)) | xi (t) = M)]pi (t)

≈ F (Ii (t) + µi (t), σi (t))pi (t), (5.11)

with conditional mean µi (t) = E[Hi (t) | xi (t) = M] and conditional vari-
ance σ 2

i (t) = Var[Hi (t) | xi (t) = M]. Also, assuming a gaussian distribution
of recurrent input Hi (t) given xi (t) = M and a spike of neuron j at time t′,
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we find

νi j (t | t′) = E[ f (ui (t))I (xi (t) = M) | Sj (t′)]

= E[ f (ui (t)) | xi (t) = M, Sj (t′)]E[I (xi (t) = M) | Sj (t′)]

≈ F (Ii (t) + µi j (t | t′), σi j (t | t′))pi j (t | t′) (5.12)

for t > t′ with conditional mean µi j (t | t′) = E[Hi (t) | xi (t) = M, Sj (t′)] and
variance σ 2

i j (t | t′) = Var[Hi (t) | xi (t) = M, Sj (t′)]. The dynamics of pi (t) and
pi j (t | t′) are described by equations 5.3 and 5.5, respectively.

Next we calculate the conditional means and variances of the recurrent
input. We find

µi (t) =
∑

k

J k
i

βk
i (t)

pi (t)
,

µi j (t | t′) =
∑

k

J k
i

βk
i j (t | t′)

pi j (t | t′)
,

σ 2
i (t) =

∑
k,l

J k
i J l

i
Bkl

i (t)
pi (t)

,

σ 2
i j (t | t′) =

∑
k,l

J k
i J l

i

Bkl
i j (t | t′)

pi j (t | t′)
(5.13)

with auxiliary variables defined as

[
βk

i (t)
]

m = E[hk
i (t) | xi (t) = m] · [ pi (t)]m,[

βk
i j (t | t′)

]
m

= E[hk
i (t) | xi (t) = m, Sj (t′)] · [ pi j (t | t′)]m,[

Bkl
i (t)

]
m = Cov[hk

i (t), hl
i (t) | xi (t) = m] · [ pi (t)]m,[

Bkl
i j (t | t′)

]
m

= Cov[hk
i (t), hl

i (t) | xi (t) = m, Sj (t′)] · [ pi j (t | t′)]m. (5.14)

Note that we use the final component of the above quantities without an
index (e.g., βk

i (t) = [
βk

i (t)
]

M). After some calculation (see the appendix), we
obtain

βk
i (t) =

∫ t

−∞
ds e−(t−s)/τ k

i pik(t | s)νk(s),

βk
i j (t | t′) =

∫ t

−∞
ds e−(t−s)/τ k

i pik j (t | s, t′)νk j (s | t′),
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[
Bkl

i (t)
]

m =
∫ t

−∞
ds

∫ t

−∞
ds ′ e−(t−s)/τ k

i −(t−s ′)/τ l
i

{
[ pikl (t | s, s ′)]mφkl (s, s ′)

− [ pik(t | s)]m[ pil (t | s ′)]m

[ pi (t)]m
νk(s)νl (s ′)

}
, (5.15)

where [ pikl (t | s, s ′)]m = E[I (xi (t) = m) | Sk(s), Sl (s ′)] and, particularly, the
last component is written as pikl (t | s, s ′) = [ pikl (t | s, s ′)]M.

5.2 Solution in the Mean-Field Limit. Similar to the case without
Markov refractoriness, we first derive a self-consistent equation for the
mean firing intensity and cross-covariances in the mean-field limit Nc → ∞,
where J ∼ 1/Nc and assuming an asynchronous state so that �φi j ∼ 1/Nc .
Because all the cross-covariance functions vanish and σ 2

i (t) → 0 in the limit,
we find, from equations 5.11 to 5.13, for t > t′,

νi (t) → f (Ii (t) + µi (t))pi (t),

νi j (t | t′) → f (Ii (t) + µi (t))pi j (t | t′),

µi (t) =
∑

k

J k
i

βk
i (t)

pi (t)
, (5.16)

while the cross-correlation function is given by equation 4.3. For the cor-
ner terms of the transition matrices, we find [Wi (t)]1M → f (Ii (t) + µi (t))
from equation 5.4 and [Wi j (t | t′)]1M → f (Ii (t) + µi (t)) for t > t′ from equa-
tion 5.6. Hence, the evolution of pi (t) and pi j (t | t′) is described by

dpi (t)
dt

= Wi (t) pi (t),

dpi j (t | t′)
dt

= Wi (t) pi j (t | t′) (5.17)

for t > t′, where the initial condition of pi j (t | t′) is given by equation 5.10.
Finally, from equation 5.15, the evolution of β i (t) is written as an ODE,

d
dt

βk
i (t) =

(
− 1

τ k
i

+ Wi (t)
)

βk
i (t) + pik(t | t−)νk(t), (5.18)

where we can apply equation 5.10 to evaluate pik(t | t−) in this limit. Figure 7
plots the mean firing intensity calculated from the above equations for vari-
ous input, and the mean-field approximation provides good approximation
of the time dependent firing intensities. Figure 8 compares the above ap-
proximation (Nc → ∞ limit) with the mean-field approximation, including
the finite size effect that we discuss in the next section. In the mean-field
limit, all the cross-correlations vanish and the autocorrelation functions
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Figure 7: Comparison of the mean firing intensity obtained from direct sim-
ulation of a single neuron (solid), without recurrent input H and no Markov
refractory effect (dotted), and the mean-field equation in the limit of Nc → ∞
(dashed). In all cases, the Markov refractory effect with τr = 2 ms/(M − 1)
was included. (A) Weak step input (baseline I = 2, peak I = 4) and refrac-
toriness M = 3; J = −1, τ = 10 ms. Although the model includes strong
Markov refractory effect, the mean-field approximation is not abolished. (B)
Strong step input (baseline I = 2, peak I = 8) and refractoriness M = 10;
J = −1, τ = 10 ms. The mean-field approximation also approximates very
well the transient oscillation caused by the the strong refractory effect and
steep current. (C) The mean-field approximation works for colored noise in-
put: τI

d I (t)
dt = −I (t) + ξ (t) with E[ξ (t)] = 4, Cov[ξ (t), ξ (t′)] = 0.1δ(t − t′), and

τI = 20 ms; M = 3, J = −1, τ = 10 ms. The initial error is due to the pre-
set initial values that deviate from the true ones. (D) Sinusoidal input input:
I (t) = 2 + sin(2π · 10 Hz · t); M = 3, J = −1, τ = 10 ms. The mean-field results
give good approximations. (A color version of this figure is available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2008.04-08-757.)

are approximated by including the Markov refractory effect but not the
self-interaction terms J i

i . We can also calculate the linar input-output filter
discussed in section 4.3 with this Markov refractoriness (see the appendix).

5.3 Estimating the Finite Size Effect. Similar to the case without
Markov refractoriness, we evaluate the mean firing intensity and cross-
covariance functions up to 1/Nc terms. We find, as in the case without
Markov refractoriness, �φi j (t, t′) ∼ 1/Nc for i 	= j , � pik(t | s) ∼ 1/Nc for
i 	= k, and the third-order covariances, such as � pikl (t | s, s ′), are of order
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Figure 8: Comparison of spike cross-correlation functions of two neurons ob-
tained by direct numerical simulation (solid), mean-field approximation in
the limit of Nc → ∞ (dashed), and with finite size correction terms (dot-
dashed). While the approximation in the limit of Nc → ∞ captures only the
strong Markov refractory effect, the weaker refractory effect caused by the
self-interaction terms is well captured with the finite size correction. The fi-
nite size correction provides a good approximation despite the strong re-
fractoriness because of an explicit evaluation of the Markov refractory ef-
fect. Mean-field equations are iteratively solved over five iterations. (A) Two
neurons are directly coupled: parameters are set to J11 = −1, J22 = −1, J12 =
−0.5, J21 = 1, τ11 = 10 ms, τ22 = 10 ms, τ12 = 20 ms, τ21 = 10 ms, M = 3, I1 =
2, I2 = 4. (B) Two neurons are not directly connected but receive common in-
put from a third neuron: parameters are set to J13 = J23 = 2, τ13 = τ23 = 10 ms,
M = 3, I1 = I2 = I3 = 2. (A color version of this figure is available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/neco.2008.04-08-757.)

1/N2
c under the asynchronous state if the contributions of individual synap-

tic weights are small, J ∼ 1/Nc . This implies σ 2
i j (t | t′) − σ 2

i (t) ∼ 1/N2
c .

The dynamics of pi (t) and pi j (t | t′) are described by equations 5.3 and
5.5, respectively. We now want to calculate µi (t), µi j (t | t′), and σ 2

i (t) to the
first order of 1/Nc . First, direct differentiation of βk

i (t) in equation 5.15 yields
an ODE update equation (see the appendix):

d
dt

βk
i (t) =

(
− 1

τ k
i

+ Wi (t)
)

βk
i (t) + pik(t | t−)νk(t)

−m
[
βk

i (t) − αk
ii (t

− | t)pi (t)
] νi (t)

pi (t)
, (5.19)

with m = (1, 0, . . . , 0,−1)T . The origin of the second term on the right-hand
side of equation 5.19 is due to the correlation of spike variable Sk(s) and the
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refractory variable xi (t). Next, we need to evaluate βk
i j (t | t′) to the zeroth

order of 1/Nc for k = i or k = j because J ∼ 1/Nc makes the contribution
of them ∼ 1/Nc , and we need to evaluate βk

i j (t | t′) to the first order of 1/Nc

for k 	= i and k 	= j case. Except for the case i = j = k, we find (see the
appendix)

βk
i j (t | t′) ≈ βk

i (t) + αk
i j (t | t′) pi j (t | t′) − αk

i (t) pi (t) (5.20)

to the order described above. The precise evaluation of this term for i = j =
k is much harder but, to a good approximation, equation 5.20 holds (see the
appendix). Note that the approximation of the i = j = k term affects the or-
der 1/Nc term of the autocovariance function, �φi i (t, t′), but affects only the
O(1/N2

c ) terms of the mean firing intensities and cross-covariance functions.
Finally, dropping higher-order terms that result as O(1/N2

c ) on the quan-
tities in equation 5.13, we find (see the appendix)

Bkl
i (t) ≈ pi (t)Akl

i (t). (5.21)

Altogether, using equation 4.12, we obtain the following update equa-
tions to evaluate the finite size effect up to order 1/Nc :

νi (t) = F (Ii (t) + µi (t), σi (t))pi (t),

νi j (t | t′) = F (Ii (t) + µi j (t | t′), σi (t))pi j (t | t′),

µi (t) =
∑

k

J k
i

βk
i (t)

pi (t)
,

µi j (t | t′) =
∑

k

J k
i

[
αk

i j (t | t′) + βk
i (t) − αk

i (t)pi (t)
pi j (t | t′)

]
,

σ 2
i (t) =

∑
k,l

J k
i J l

i Akl
i (t),

d
dt

αk
i (t) = −αk

i (t)
τ k

i
+ νk(t),

d
dt

αk
i j (t | t′) = −αk

i j (t | t′)

τ k
i

+ νk j (t | t′),

d
dt

Akl
i (t) = − Akl

i (t)
τ kl

i
+ �αk

il (t
+ | t)νl (t) + �αl

ik(t− | t)νk(t),

d
dt

βk
i (t) =

(
− 1

τ k
i

+ Wi (t)
)

βk
i (t) + pik(t | t−)νk(t)

−m
[
βk

i (t) − αk
ii (t

− | t)pi (t)
] νi (t)

pi (t)
, (5.22)



1230 T. Toyoizumi, K. Rad, and L. Paninski

and the dynamics of pi (t) and pi j (t | t′) follows equations 5.3 and 5.5. As
is the case without the Markov refractoriness, calculating this finite size
effect is computationally expensive for time-dependent input, although in
principle, this equation should work under that case as well. We plot the
mean firing intensities of two neurons and cross-correlations in Figure 8.
The finite size effect well captures the cross-correlation functions. It also
successfully captures a peak in the cross-correlation function if two neurons
are not directly connected but receive a common input from a third neuron
(see Figure 8). Again, if the values of the above equations are initially set to
the solution in the limit of Nc → ∞ given by equations 5.16 to 5.18, only a
couple of iterations of the above equations are sufficient for the evaluation
of cross-correlation functions.

6 Discussion

We have introduced mean-field methods for analyzing the dynamics of a
coupled population of neurons whose activity may be well approximated as
the output of a generalized linear point process model. Our approximations
for the mean time-varying firing rate and correlations in the population are
exact in the mean-field limit (Nc → ∞ under J ∼ 1/Nc scaling), though we
have found numerically that the finite size correction to the mean-field equa-
tions is useful even for physiologically relevant connectivity strengths. The
approximations may be computed by solving a set of coupled ordinary dif-
ferential equations. This approach is much more computationally tractable
than direct Monte Carlo sampling and may lead to greater analytical insight
into the behavior of the network. In addition, we have introduced a new
model, the generalized linear point process model with Markovian refrac-
toriness, that captures strong refractoriness, retains all of the easy-fitting
properties of the standard generalized linear model, and whose firing rate
dynamics are much more amenable to mean-field analysis than the stan-
dard modells. Note that most of our illustrations involved the simulation
of only a couple of mutually connected neurons; this small-Nc case can be
considered a kind of worst-case analysis, since with more asynchronous
neurons (larger Nc), the central limit theorem becomes progressively appli-
cable, the distribution of recurrent input approaches the assumed gaussian
distribution, and our approximations become more accurate.

This kind of mean-field analysis—or more generally, approaches for
reducing the complexity of the dynamics of networks of noisy, nonlinear
neurons—has a long history in computational neuroscience, as reviewed
(Hertz et al., 1991; Gerstner & Kistler, 2002; Renart et al., 2003). While the
point-process models we have discussed here are somewhat distinct from
the noisy integrate-and-fire-type models that have been analyzed most ex-
tensively in this literature (e.g., Mattia & Del Giudice, 2002; Shriki, Hansel,
& Sompolinsky, 2003; Moreno-Bote & Parga, 2004, 2006; Fourcaud-Trocme,
Hansel, van Vreeswijk, & Brunel, 2003; Chizhov & Graham, 2007; Doiron,



Mean-Field Approximations for GLM Neurons 1231

Lindner, Longtin, Maler, & Bastian, 2004; Lindner, Doiron, & Longtin, 2005),
it is more important to stress the differences in the motivation of this work
and previous work. Our main goal here was to provide analytical tools that
an experimentalist who has fit a point process model to his or her data (as
in, e.g., Paninski, 2004; Truccolo et al., 2005; Okatan et al., 2005; Pillow et al.,
2008) may use to understand the behavior of the network or single-cell
models that have just been inferred. In particular, we were interested in
predicting, for example, the mean firing rate of a specific GLM network to
a novel arbitrary dynamic input stimulus. This contrasts with the literature
cited above, which has for the most part focused on the mean firing
rates, first-order response, and fixed-point stability properties behavior of
idealized, infinitely large populations (Mattia & Del Giudice, 2002, is an
exception here) with homogeneous membrane and connectivity properties.
In addition, most analytical studies of the input-output property of model
neurons with a dynamical input start from a Fokker-Planck formalism and
rely on a direct numerical simulation of the partial differential equation
(Nykamp & Tranchina, 2000; Knight, Omurtag, & Sirovich, 2000; Chizhov
& Graham, 2007; this direct approach is feasible only in the case that the sys-
tem dynamics may be reduced to a state space of dimension at most two or
so, and therefore does not apply in the networks studied here), or on linear
response theory that assumes a small time-dependent component relative
to the baseline component (Shriki et al., 2003; Fourcaud-Trocme et al., 2003;
Doiron et al., 2004; Lindner et al., 2005), or on some quasi-stationary as-
sumption (Knight et al., 2000; Mattia & Del Giudice, 2002; Fourcaud-Trocme
& Brunel, 2005; Moreno-Bote & Parga, 2004, 2006) restricting the applicable
input stimulus to slowly changing one or two simple step stimuli with
sufficiently long gaps between steps that the network may reach equilib-
rium. Thus, it is difficult to apply the insights developed in these previous
analyses directly to obtain a quantitative prediction of the dynamic firing
rates of a specific nonhomogeneous, nonsymmetric network.

We derived, in this article, the finite size correction to the mean-field
equation that captures cross-correlation functions between neurons. This
finite size effect originates from the J i j ∼ 1/Nc scaling of synaptic strengths
that guarantees O(1/

√
Nc) fluctuation of inputs under asynchronous states.

Hence, the finite size effect described in this article is the contribution of
small fluctuation in the input around the mean. Another kind of finite size
effect has also been discussed in the literature. In a sparsely connected
network, correlations between two neurons disappear if Nc is sufficiently
smaller than the total number of neurons, N (Derrida, Gardner, & Zippelius,
1987). The finite Nc effect has been evaluated using stochastic Fokker-Planck
equations (Brunel & Hakim, 1999; Mattia & Del Giudice, 2002). One should
note, however, that the evaluation of this finite size effect for an experimen-
tally estimated network structure is generally not straightforward because
the evaluation of a Fokker-Planck equation with many state-space vari-
ables is computationally hard. Finally, J i j ∼ 1/Nc is not the unique way to
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scale synapses. Under the balanced input assumption, J i j ∼ 1/
√

Nc yields
order one fluctuation of input even in the limit of Nc → ∞ (Sompolinksy,
Crisanti, & Sommers, 1988; van Vreeswijk & Sompolinsky, 1996, 1998). How-
ever, nontrivial cross-correlation functions cannot be captured under the
standard asynchronous assumption of mean-field analysis in the Nc → ∞
limit. The calculation of the finite size effect of a network with J i j ∼ 1/

√
Nc

is not the scope of this article.
Two works that bear a stronger mathematical resemblance to ours are

Ginzburg and Sompolinsky (1994) and Meyer and van Vreeswijk (2002).
These authors applied mean-field approximations to coupled model neu-
rons to study the mean firing rates and autocorrelation and cross-correlation
functions in the network. However, the two-state neuron model discussed
in Ginzburg and Sompolinsky (1994) (where the neurons flip between “ac-
tive” and “inactive” firing states according to a Markov process with some
finite rate constant) is somewhat distinct from the point-process models
we have treated here (where the neuron remains in the “active” state for
a negligible time—i.e., the neuron spikes instantaneously), and we have
not been able to translate these earlier results to the problems of interest in
this article. Renewal point spiking neuorns are analyzed in Meyer and van
Vreeswijk (2002), and their results are closer to ours. However, according to
their refractory model, one has to consider infinitely many refractory states
in the continuous time limit, whereas our spiking neuron model has M
refractory state; M can be as small as 2 while keeping the order 1 strong re-
fractory effect. Accordingly, their cross-correlations should be evaluated by
integral equations that are computationally (and conceptually) somewhat
more involved, while the methods developed here require us to evaluate
just a couple of differential equations.

Finally, the effect of common input on the cross-correlation function was
previously studied in a related model (Nykamp, 2007), using an expansion
of the output f (.) nonlinearity arround J = 0. One major difference between
the analysis we have presented here and this previous work is that a simple
expansion around J = 0 does not lead to a good approximation of the
firing rate, even in the mean-field limit of Nc → ∞, because the recurrent
input changes the baseline firing rate (cf. Figure 5); thus, it is much more
accurate to expand around the zeroth-order firing rate given by the roots
of equation 4.13, as discussed in section 4.3. (On the other hand, our mean-
field approach does require a gaussian approximation that is known to be
inaccurate in the case of large J terms.) It would be interesting to explore
whether the methods developed here could help lead to more accurate
inference of the common-input effects discussed in Nykamp (2007).

There are many possible applications of this mean-field method for prob-
lems that require fast evaluation of mean firing rates and cross-correlation
functions. One example is to evaluate the information coded by spiking
of a recurrently connected network about the input stimulus. This kind of
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information calculation usually requires averaging over recent spike his-
tory (Toyoizumi, Aihara, & Amari, 2006), but the gaussian approximation
of the input described here could greatly ease the computational complex-
ity to evaluate the information of stimulus coded by the network. We hope
to pursue this direction in future work.

Appendix: Mathematical Details

In this appendix, we collect the details of the expansion analyses summa-
rized in the main text.

A.1 Calculation of βk
i , βk

i j , and Bkl
i . In this appendix, we use Dk

i s =
e−(t−s)/τ k

i ds to simplify some expressions. Direct evaluation of equation 5.14
yields

[
βk

i (t)
]

m = E
[
hk

i (t) | xi (t) = m
] · [ pi (t)]m

= E
[
hk

i (t)I (xi (t) = m)
]

=
∫ t

−∞
Dk

i s E[Sk(s)I (xi (t) = m)]

=
∫ t

−∞
Dk

i s [ pik(t | s)]mνk(s),

[
βk

i j (t | t′)
]

m
= E[hk

i (t) | xi (t) = m, Sj (t′)] · [ pi j (t | t′)]m (A.1)

= E[hk
i (t)I (xi (t) = m) | Sj (t′)],

=
∫ t

−∞
Dk

i s E[Sk(s)I (xi (t) = m) | Sj (t′)],

=
∫ t

−∞
Dk

i s [ pik j (t | s, t′)]mνk j (s | t′),

where [ pik(t | s)]m = E[I (xi (t) = m) | Sk(s)] and [ pik j (t | s, t′)]m = E[I
(xi (t) = m) | Sk(s), Sj (t′)]. Similarly, we find

[
Bkl

i (t)
]

m = Cov
[
hk

i (t), hl
i (t) | xi (t) = m

] · [ pi (t)]m

= {
E

[
hk

i (t)hl
i (t) | xi (t) = m

] − E
[
hk

i (t) | xi (t) = m
]

×E
[
hl

i (t) | xi (t) = m
]} · [ pi (t)]m

= E
[
hk

i (t)hl
i (t)I (xi (t) = m)

] − [βk
i (t)]m[βl

i (t
′)]m

[ pi (t)]m
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=
∫ t

−∞
Dk

i s
∫ t

−∞
Dl

i s
′ {E[Sk(s)Sl (s ′)I (xi (t) = m)]

− [ pik(t | s)]m[ pil (t | s ′)]m

[ pi (t)]m
νk(s)νl (s ′)

}

=
∫ t

−∞
Dk

i s
∫ t

−∞
Dl

i s
′ {[ pikl (t | s, s ′)]mφkl (s, s ′)

− [ pik(t | s)]m[ pil (t | s ′)]m

[ pi (t)]m
νk(s)νl (s ′)

}
. (A.2)

A.2 Approximation of βk
i (t), βk

i j(t | t′) and Bkl
i (t). In order to evaluate

the finite size effect—order 1/Nc terms of the mean firing intensity and
cross-covariance functions—we need to evaluate µi (t) pi (t) = ∑

k J k
i βk

i (t),
µi j (t | t′) pi j (t | t′) = ∑

k J k
i βk

i j (t | t′), and σ 2
i (t) pi (t) = ∑

k,l J k
i J l

i Bkl
i (t) to the

first order of 1/Nc . Assuming that the synaptic strengths scale as J ∼ 1/Nc ,
we need to evaluate

βk
i (t) =

∫ t

−∞
Dk

i s pik(t | s)νk(s)

to the first order of 1/Nc ,

βk
i j (t | t′) =

∫ t

−∞
Dk

i s pik j (t | s, t′)νk j (s | t′)

to the zeroth order of 1/Nc if k = i or k = j because J ∼ 1/Nc but to the first
order of 1/Nc otherwise (in the following, we divide these into five cases
and consider each case separately), and

[
Bkl

i (t)
]

m =
∫ t

−∞
Dk

i s
∫ t

−∞
Dl

i s
′
{

[ pikl (t | s, s ′)]mφkl (s, s ′)

− [ pik(t | s)]m[ pil (t | s ′)]m

[ pi (t)]m
νk(s)νl (s ′)

}

to the first order of 1/Nc if i, j, k are all different, and to the zeroth order of
1/Nc if k = l, k = i , or l = i .

First, direct differentiation of βk
i (t) yields

d
dt

βk
i (t) = −βk

i (t)
τ k

i
+ pik(t | t−)νk(t) +

∫ t

−∞
Dk

i s Wik(t | s) pik(t | s)νk(s)

=
(

− 1
τ k

i
+ Wi (t)

)
βk

i (t) + pik(t | t−)νk(t)
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+
∫ t

−∞
Dk

i s �Wik(t | s) pik(t | s)νk(s)

=
(

− 1
τ k

i
+ Wi (t)

)
βk

i (t) + pik(t | t−)νk(t)

+ m
∫ t

−∞
Dk

i s
(

νik(t | s) − νi (t)
pi (t)

pik(t | s)
)

νk(s)

=
(

− 1
τ k

i
+ Wi (t)

)
βk

i (t) + pik(t | t−)νk(t)

+ m
∫ t

−∞
Dk

i s
(

νki (s | t) − νk(s)
pi (t)

pik(t | s)
)

νi (t)

=
(

− 1
τ k

i
+ Wi (t)

)
βk

i (t) + pik(t | t−)νk(t)

+ m
(

αk
ii (t

− | t) − βk
i (t)

pi (t)

)
νi (t), (A.3)

where m = (1, 0, . . . , 0,−1)T , and we used in the above calculation, from
equations 5.4 and 5.6,

�Wik(t | s) pik(t | s) = [Wik(t | s) − Wi (t)] pik(t | s)

= m
(

νik(t | s)
pik(t | s)

− νi (t)
pi (t)

)
pik(t | s). (A.4)

Next, to evaluate βk
i j (t | t′), we use � pikl (t | s, s ′) = [ pikl (t | s, s ′) − pi (t) −

� pik(t | s) − � pil (t | s ′)] ∼ 1/N2
c if i, k, l are all different; � pik(t | s) = pik(t |

s) − pi (t) ∼ 1/Nc for i 	= k. As we discussed at the beginning of this section,
in order to evaluate µi j (t | t′) to the first order of 1/Nc , we have to consider
the number of combinations of indexes. For example, there are Nc terms of
β i

i i and N2
c terms of β i

i j . Hence, we consider the following five possibilities
for combining indexes:

� Case 1 (i 	= j, i 	= k); evaluated up to the first order of 1/Nc :

βk
i j (t | t′) ≈

∫ t

−∞
Dk

i s [ pi (t) + � pik(t | s) + � pi j (t | t′)]νk j (s | t′)

=
∫ t

−∞
Dk

i s [ pi (t)νk j (s | t′) + � pik(t | s)(νk(s) + �νk j (s | t′))

+� pi j (t | t′)(νk(s) + �νk j (s | t′))]

≈
∫ t

−∞
Dk

i s [ pi (t)νk j (s | t′) + � pik(t | s)νk(s)
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+� pi j (t | t′)νk(s)]

=
∫ t

−∞
Dk

i s [ pi (t)νk j (s | t′) + ( pik(t | s) − pi (t))νk(s)

+� pi j (t | t′)νk(s)]

= pi (t)αk
i j (t | t′) + (βk

i (t) − pi (t)αk
i (t)) + � pi j (t | t′)αk

i (s)

= βk
i (t) + pi (t)�αk

i j (t | t′) + � pi j (t | t′)αk
i (s)

≈ βk
i (t) + pi j (t | t′)αk

i j (t | t′) − pi (t)αk
i (s). (A.5)

Note that in the second line, we used �pik ∼ 1/Nc and �νi j ∼ 1/Nc ,
for example, and neglected higher-order terms such as �pik�νk j .

� Case 2 (i = j, k 	= i); evaluated up to the first order of 1/Nc :

βk
ii (t | t′) ≈

∫ t

−∞
Dk

i s [ pi i (t | t′) + � pik(t | s)]νki (s | t′)

=
∫ t

−∞
Dk

i s [ pi i (t | t′)νki (s | t′) + ( pik(t | s) − pi (t))νk(s)]

= pi i (t | t′)αk
ii (t | t′) + (βk

i (t) − pi (t)αk
i (t))

= βk
i (t) + pi i (t | t′)αk

ii (t | t′) − pi (t)αk
i (t). (A.6)

� Case 3 (i = k, i 	= j); evaluated up to the zeroth order of 1/Nc :

β i
i j (t | t′) ≈

∫ t

−∞
Di

i s pi i (t | s)νi (s)

= β i
i (t)

≈ β i
i (t) + pi j (t | t′)αi

i j (t | t′) − pi (t)αi
i (s). (A.7)

� Case 4 ( j = k, i 	= j); evaluated up to the zeroth order of 1/Nc :

β
j
i j (t | t′) ≈

∫ t

−∞
Dj

i s [ pi (t) + � pi j (t | s) + � pi j (t | t′)]ν j j (s | t′)

≈
∫ t

−∞
Dj

i s pi (t)ν j j (s | t′)

= pi (t)α
j
i j (t | t′)

≈ β
j
i (t) + pi (t)α

j
i j (t | t′) − pi (t)α

j
i (t). (A.8)

� Case 5 (i = j = k); evaluated up to the first order of 1/Nc :

β i
i i (t | t′) =

∫ t

−∞
Di

i s pi i i (t | s, t′)νi i (s | t′). (A.9)
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This is a difficult situation to analyze precisely. However, unless the
neuron i receives extremely strong input, the conditional firing intensity
νi i (s | t′) is almost zero if s and t′ are as close as the refractory time constant
of the neuron (M − 1)τr , so the contribution of this interval on the integral
is small. If s and t′ are separated more than the refractory time constant, the
interaction between the spike at s and t′ becomes small, that is, pi i i (t | s, t′) ≈
pi (t) + � pi i (t | s) + � pi i (t | t′), and �νi i (s | t′) = νi i (s | t′) − νi (s) becomes
small. Hence, to a good approximation,

β i
i i (t | t′) ≈

∫ t

−∞
Di

i s [ pi i (t | t′) + � pi i (t | s)]νi i (s | t′)

=
∫ t

−∞
Di

i s [ pi i (t | t′)νi i (s | t′)+� pi i (t | s)νi (s)

+� pi i (t | s)�νi i (s | t′)]

≈
∫ t

−∞
Di

i s [ pi i (t | t′)νi i (s | t′) + � pi i (t | s)νi (s)]

= β i
i (t) + pi i (t | t′)αi

i i (t | t′) − pi (t)αi
i (t). (A.10)

The validity of this intuitive approximation should be examined by numer-
ical simulations. Note that β i

i i (t | t′) contributes to the order 1/Nc term of the
autocovariance function �φi i (t, t′) but contributes only to order 1/N2

c terms
of the mean firing intensity νi (t) and cross-covariance functions �φi j (t, t′)
with i 	= j .

Finally, we can rewrite Bkl
i as

[
Bkl

i (t)
]

m =
∫ t

−∞
Dk

i s
∫ t

−∞
Dl

i s
′
{

[ pikl (t | s, s ′)]mφkl (s, s ′)

− [ pik(t | s)]m[ pil (t | s ′)]m

[ pi (t)]m
νk(s)νl (s ′)

}

=
∫ t

−∞
Dk

i s
∫ t

−∞
Dl

i s
′
{

[ pikl (t | s, s ′)]m�φkl (s, s ′)

+
(

[ pikl (t | s, s ′)]m − [ pik(t | s)]m[ pil (t | s ′)]m

[ pi (t)]m

)
νk(s)νl (s ′)

}

=
∫ t

−∞
Dk

i s
∫ t

−∞
Dl

i s
′
{

[ pikl (t | s, s ′)]m�φkl (s, s ′)

+
(

[� pikl (t|s, s ′)]m− [� pik(t|s)]m[� pil (t|s ′)]m

[ pi (t)]m

)
νk(s)νl (s ′)

}
,

(A.11)
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where we used � pik(t | s) = pik(t | s) − pi (t) and � pikl (t | s, s ′) = pikl (t |
s, s ′) − pi (t) − � pik(t | s) − � pil (t | s ′). We need to evaluate Bkl

i up to the
first order of 1/Nc if i, k, l are all different and up to the zeroth order of 1/Nc

if k = l, k = i , or l = i . Up to these orders, Bkl
i can be approximated as

Bkl
i (t) ≈

∫ t

−∞
Dk

i s
∫ t

−∞
Dl

i s
′ pi (t)�φkl (s, s ′)

= pi (t)Akl
i (t). (A.12)

Note that � pik ∼ 1/Nc for i 	= k, � pikl (t | s, s ′) ∼ 1/N2
c if i, k, l are different,

and � pi ik(t | s, s ′) ∼ 1/Nc for i 	= k.

A.3 Calculation of the Linear Filter in the Generalized Linear Model
with Markov Refractoriness. We assume that the input is given by

Ii (t) =
∫

Ki (t − s)ξi (s) ds (A.13)

with stimulus ξi = ξ
(0)
i + δξi (t), and calculate the linearized input-output

filter for small stimulus fluctuation δξi (t) about a constiant baseline ξ
(0)
i .

In the limit of Nc → ∞, the mean-field equation is given by

νi (t) = f (Ii (t) + µi (t))pi (t),

µi (t) =
∑

k

J k
i

βk
i (t)

pi (t)
,

d
dt

pi (t) = Wi (t) pi (t),

d
dt

βk
i (t) =

(
− 1

τ k
i

+ Wi (t)
)

βk
i (t) + pi (t)νk(t). (A.14)

First, for a constant input I (0)
i , we obtain

ν
(0)
i = f (0)

i p(0)
i , (A.15)

µ
(0)
i =

∑
k

J k
i

βk
i

(0)

p(0)
i

,

0 = W
(0)
i p(0)

i ,

βk
i

(0) =
[

1
τ k

i
− W

(0)
i

]−1

p(0)
i ν

(0)
k ,
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where f (0)
i = f (I (0)

i + µ
(0)
i ) and the second to last equation is easily solvable

with respect to p(0)
i ; we find

[
p(0)

i

]
m =




τr f (0)
i

1 + (M − 1)τr f (0)
i

(m = 1, . . . , M − 1)

1

1 + (M − 1)τr f (0)
i

(m = M).

(A.16)

Next, the linear response to a small perturbation δ Ii (t) = ∫
Ki (t −

s)δξi (s) ds is given by

δνi (t) = f ′
i

(0)(δ Ii (t) + δµi (t))p(0)
i + f (0)

i δpi (t),

δµi (t) =
∑

k

J k
i

[
δβk

i (t)

p(0)
i

− βk
i

(0)
δpi (t)

(p(0)
i )2

]
,

d
dt

δ pi (t) = δWi (t) p(0)
i + W

(0)
i δ pi (t),

d
dt

δβk
i (t) =

(
− 1

τ k
i

+ W
(0)
i

)
δβk

i (t) + δWi (t)βk
i

(0)

+δ pi (t)ν
(0)
k + p(0)

i δνk(t), (A.17)

where f ′
i

(0) = f ′(I 0
i + µ

(0)
i ) and δWi (t) = meT

M[δνi (t)/p(0)
i − ν

(0)
i δpi (t)/(p(0)

i )2].
Remember that m = (1, 0, . . . , 0,−1)T and eM = (0, . . . , 0, 1)T . Fourier trans-
formation of the above equations gives

δν̂i (ω) = f ′
i

(0)(δ Îi (ω) + δµ̂i (ω))p(0)
i + f (0)

i δ p̂i (ω),

δµ̂i (ω) =
∑

k

J k
i

[
δβ̂k

i (ω)

p(0)
i

− βk
i

(0)
δ p̂i (ω)

(p(0)
i )2

]
,

δ p̂i (ω) = L̂i (ω)mδν̂i (ω),

δβ̂
k
i (ω) = q̂k

i (ω)δν̂i (ω) + R̂
k
i (ω)δν̂k(ω), (A.18)

where L̂i (ω) = [iω + meT
Mν

(0)
i /p(0)

i − W
(0)
i ]−1, q̂k

i (ω) = [iω + 1/τ k
i − W

(0)
i ]−1

[mβk
i

(0)
/p(0)

i − meT
M L̂i (ω)mβk

i
(0)

ν
(0)
i /(p(0)

i )2 + L̂i (ω)mν
(0)
k ], and R̂

k
i (ω) = [iω +

1/τ k
i − W

(0)
i ]−1 p(0)

i . Note that i is the imaginary unit.
The above equation is still very complicated. So it is worth thinking

about the special case J k
i = 0. In this case, the linear response is described
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by

δν̂i (ω) = f ′
i

(0) p(0)
i

1 − f (0)
i eT

M L̂i (ω)m
δ Îi (ω). (A.19)

The calculation of L̂i (ω) is straightforward thanks to the bidiagonal nature

of [iω + meT
Mν

(0)
i /p(0)

i − W
(0)
i ]. After direct matrix inversion, we find

L̂i (ω) = τrρ




1 0 0 · · · 0

ρ 1 0
...

ρ2 ρ 1
...

. . .

ρM−2 · · · ρ 1 0

ρM−1η · · · ρ2η ρη η




, (A.20)

with ρ = 1/(1 + iωτr ) and η = 1 + 1/(iωτr ). Hence, the linear response is
simplified as

δν̂i (ω) = f ′
i

(0) p(0)
i

1 − f (0)
i τrρη(ρM−1 − 1)

δ Îi (ω). (A.21)

In particular, if M = 2, we find that the Fourier inverse transformation of the
gain function Ĝ(ω) = δν̂i (ω)/δ Îi (ω) = f ′

i
(0) p(0)

i

1+ f (0)
i τr /(1+iωτr )

has an analytical form,
that is, using p(0)

i = 1/(1 + τr f (0)
i ), we find

G(t) = f ′
i

(0)

1 + τr f (0)
i

[
δ(t) − f (0)

i e−( fi
(0)+1/τr )t�(t)

]
. (A.22)

Note that in the limit of τr → 0, the trivial gain function is G(t) → f ′
i

(0)
δ(t).

Hence, we can see that the suppressive kernel is added to this instantaneous
gain function due to the Markov refractoriness. This linear response for
J k

i = 0 case is a special case of a more general linear response for a renewal
neuron (Gerstner & Kistler, 2002). Note that in equation A.18, we discussed
a more general case and considered the interaction between the refractory
effect and spike interaction effect of a network of recurrently connected
neurons.
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